Wisconsin Mathematics Formula Reference Sheet

Shape	Formulas for Area (A) and Circumference (C)
Triangle	$A = \frac{1}{2}bh = \frac{1}{2} \times base \times height$
Rectangle	$A = Iw = \text{length} \times \text{width}$
Trapezoid	$A = \frac{1}{2}(b_1 + b_2)h = \frac{1}{2} \times \text{sum of bases} \times \text{height}$
Parallelogram	$A = bh = base \times height$
Circle	$A=\pi r^2=\pi imes ext{square of radius}$ $C=2\pi r=2 imes\pi imes ext{radius}$
Figure	Formulas for Volume (V) and Surface Area (SA)
Rectangular Prism	$V = lwh = length \times width \times height$ $SA = 2lw + 2hw + 2lh$ $= 2(length \times width) + 2(height \times width) + 2(length \times height)$
General Prisms	$V = Bh = $ area of base \times height $SA = $ sum of the areas of the faces
Right Circular Cylinder	$V = Bh = $ area of base \times height $SA = 2B + Ch = (2 \times $ area of base) $+$ (circumference \times height)
Right Pyramid	$V = \frac{1}{3}Bh = \frac{1}{3} \times \text{area of base} \times \text{height}$ $SA = B + \frac{1}{2}P\ell$ = area of base + $(\frac{1}{2} \times \text{perimeter of base} \times \text{slant height})$
Right Circular Cone	$V = \frac{1}{3}Bh = \frac{1}{3} \times \text{area of base} \times \text{height}$ $SA = B + \frac{1}{2}C\ell = \text{area of base} + (\frac{1}{2} \times \text{circumference} \times \text{slant height})$
Sphere	$V = \frac{4}{3}\pi r^3 = \frac{4}{3} \times \pi \times \text{cube of radius}$ $SA = 4\pi r^2 = 4 \times \pi \times \text{square of radius}$

Equations of a Line

Slope-Intercept Form: y = mx + bwhere m = slope and b = y-intercept

Point-Slope Form: $y - y_1 = m(x - x_1)$ where m = slope, $(x_1, y_1) =$ point on line

Combinations and Permutations

$$nCr = \frac{n!}{r!(n-r)!}$$
 $nPr = \frac{n!}{(n-r)!}$

Formulas for Right Triangles

$$\sin x = \frac{a}{c} = \left(\frac{\text{opp}}{\text{hyp}}\right)$$

$$\cos x = \frac{b}{c} = \left(\frac{\text{adj}}{\text{hyp}}\right)$$

$$\tan x = \frac{a}{b} = \left(\frac{\text{opp}}{\text{adj}}\right)$$

Pythagorean Theorem: $a^2 + b^2 = c^2$

Special Right Triangles

Coordinate Geometry Formulas

Let (x_1, y_1) and (x_2, y_2) be two points in the plane.

slope =
$$\frac{y_2 - y_1}{x_2 - x_1}$$
 where $x_2 \neq x_1$

$$midpoint = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

distance =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Polygon Angle Formulas

Sum of degree measures of the interior angles of a polygon:

$$180(n-2)$$

Degree measure of an interior angle of a regular polygon:

$$\frac{180(n-2)}{n}$$

where n is the number of sides of the polygon

Interest Formulas

Simple Interest: A = P(1 + rt)

Compound Interest: $A = P(1 + \frac{r}{n})^{nt}$

A = amount (including interest)

P = principal

r =interest rate (expressed as a decimal)

n = number of compoundings per year

t = number of years

Quadratic Equations

Let $ax^2 + bx + c = 0$, where $a \neq 0$.

Then
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

x-coordinate of vertex = $-\frac{b}{2a}$

Distance Traveled

$$d = rt$$

 $distance = rate \times time$